

Bravo Documentation

Bravo [http://www.bravoserver.org/] is an elegant, speedy, and extensible implementation of the Minecraft
Alpha/Beta protocol. Only the server side is implemented. The following
introductory topics provide a better look at the project, its goals, and
current capabilities.

	A high-level introduction
	Similar and different

	Current state

	Project licensing

	Q & A

	Credits

	Features
	Standard features

	Extended features

	Differences vs. vanilla Minecraft Server
	Responsiveness

	Chunks

	Inventory

	Minecarts

	Philosophy
	Design Decisions

	Versioning

Administrator Topics

The following topics are meant for those wishing to run a Bravo server. Topics
such as installation, configuration, and troubleshooting are covered here.
No software development background is necessary.

	How to administer Bravo
	Configuration

	Plugin Data Files

	Plugins
	Packs

	Terrain generators

	Automatons

	Seasons

	Hooks

	Troubleshooting
	Configuring

	Errors

	Help!

	Web Service
	Configuration

Developer Topics

The following topics are of general use to those wishing to modify or understand
the Bravo source code. These topics are completely unecessary for those who
are only interested in running or administering a Bravo server.

	Extending Bravo
	Asynchronous Ideas

	The Good, the Bad, and the Ugly

	Parameters

	The Flexibility of Commands

	Noise
	Probability

	Core
	beta – Minecraft Beta

	blocks – Block descriptions

	chunk – Chunk data structures

	entity – Entities

	furnace – Furnace Tile

	ibravo – Interfaces

	infini – InfiniCraft

	inventory – Inventories

	location – Locations

	plugin – Plugin loader

	stdio – Console support

	world – Worlds

	Auxiliary
	simplex – Simplex noise generation

	utilities – Helper functions

	Tools
	Chunkbench

	Jsondump

	NBTdump

	Noiseview

	parser-cli

Indices and tables

	Index

	Module Index

	Search Page

A high-level introduction

Bravo is an open source, reverse-engineered implementation of Minecraft’s server
application. Two of the major building blocks are Python [http://python.org/] and Twisted [http://twistedmatrix.com/], but
you need not be familiar with either to run, administer, and play on a
Bravo-based server.

Similar and different

While one of the goals of Bravo is to be roughly on par with the standard,
“Notchian” Minecraft server, Bravo does change and improve things for the
better, where appropriate. See Differences vs. vanilla Minecraft Server for more details.

Some of the more positive hilights include:

	More responsiveness with higher populations.

	Much less memory and bandwidth consumption.

	Better inventory system that avoids some bugs found in the standard server.

Current state

Bravo is currently in heavy development. While it is probably safe to run
creative games, we lack some elements needed for Survival-Multiplayer. Take
a look at Features to get an idea of where we currently stand.

We encourage the curious to investigate for themselves, and post any bugs,
questions, or ideas you may have to our issue tracker [https://github.com/bravoserver/bravo/issues].

Project licensing

Bravo is MIT/X11-licensed. A copy of the license is included in the
LICENSE file in the repository or distribution. This extremely
permissive license gives you all of the flexibility you could ever want.

Q & A

Why are you doing this? What’s wrong with the official Alpha/Beta server?

Plenty. The biggest architectural mistake is the choice of dozens of threads
instead of NIO and an asynchronous event-driven model, but there are other
problems as well. Additionally, the offical server development team has
recently moved to remove all other servers as options for people wishing to
deploy servers. We don’t approve of that.

Are you implying that the official Alpha server is bad?

Yes. As previous versions of this FAQ have stated, Notch is a cool guy, but
the official server is bad.

Are you going to make an open-source client? That would be awesome!

The server is free, but the client is not. Accordingly, we are not pursuing
an open-source client at this time. If you want to play Alpha, you should pay
for it. There’s already enough Minecraft piracy going on; we don’t feel like
being part of the problem. That said, Bravo’s packet parser and networking
tools could be used in a client; the license permits it, after all.

Where did the docs go?

We contribute to the Minecraft Collective’s wiki at
http://mc.kev009.com/wiki/ now, since it allows us to share data faster. All
general Minecraft data goes to that wiki. Bravo-specific docs are shipped in
ReST form, and a processed Sphinx version is available online at
http://bravo.readthedocs.org/.

Why did you make design decision <X>?

There’s an entire page dedicated to this in the documentation. Look at
docs/philosophy.rst or Philosophy.

It doesn’t install? Okay, maybe it installed, but I’m having issues!

On Freenode IRC (irc.freenode.net), #bravo is dedicated to Bravo development
and assistance, and #mcdevs is a more general channel for all custom
Minecraft development. You can generally get help from those channels. If you
think you have found a bug, you can directly report it on the Github issue
tracker as well.

Please, please, please read the installation instructions in the README first,
as well as the comments in bravo.ini.example. I did not type them out so that
they could be ignored. :3

Credits

Who are you guys, anyway?

Corbin Simpson (MostAwesomeDude/simpson) is the main coder. Derrick Dymock
(Ac-town) is the visionary and provider of network traffic dumps. Ben Kero
and Mark Harris are the reluctant testers and bug-reporters. The Minecraft
Coalition has been an invaluable forum for discussion.

Features

Bravo’s extensible design means that there are many different plugins and
features. Since most servers do not have an extensive or exhaustive list of
the various plugins that they include, one is provided here for Bravo.

Standard features

These features are found in official, Mojang-sponsored, unmodified servers.

Console

Bravo provides a small, plain console suitable for piping input and output, as
well as interactive sessions.

Login

Bravo supports the two login methods supported by the Mojang-sponsored client:
offline authentication and online authentication.

Geometry

Bravo understands how to manipulate and transfer geometry. In addition, Bravo
can read and write the Alpha NBT and Beta MCR disk formats.

Time

Bravo fully implements the in-game day and night. Bravo’s days are exactly 20
minutes long.

Entities

Bravo understands the concept of entities, and is able to track the following
kinds of entities:

	Mobs

	Paintings

	Pickups

	Players

	Tiles

Mobs

Bravo understands the following mobs:

	Chickens/ducks (“Chucks”)

	Cows

	Creepers

	Ghasts

	Giant zombies

	Pigs

	Sheep

	Skeletons

	Slimes

	Spiders

	Squids

	Wolves

	Zombie pigmen

	Zombies

Tiles

Bravo understands the following tiles:

	Chests

	Furnaces

	Mob spawners

	Music blocks

	Signs

Inventory

Bravo provides server-side inventory handling.

Physics

Bravo simulates physics, including the behaviors of sand, gravel, water and
lava, and redstone.

Extended features

Bravo provides many things not in other servers. While a strict comparison of
other open-source servers is impossible due to the speedy rate at which they
are changing, the features that separate Bravo from the Mojang-sponsored
server are listed here.

Console

Bravo ships with a fancy console which supports readline-like editing
features.

Time

Bravo implements an in-game year of 360 in-game days.

Plugins

Bravo supports several different types of plugins. For more information, see
Plugins.

Differences vs. vanilla Minecraft Server

Bravo was written from the ground up and doesn’t inherit code from any other
Minecraft project. This means that it sometimes behaves very differently, in
subtle and obvious ways, from other servers.

The “Notchian” server is the server authored by Notch and distributed by
Mojang as a companion to the Mojang-sponsored client.

Responsiveness

Bravo is occasionally perceived to be “lighter” or “snappier” compared to the
Notchian server. Reports of feeling like players are moving faster than normal
are also common. The root cause is simple: Bravo is quicker to respond to
clients than the Notchian server. This is normal, expected, and not currently
planned to be fixed.

Chunks

The Notchian server maintains a floating pattern above players, centered on
the chunk the player is standing in. This pattern is always a square of
chunks, 21 chunks to a side. This results in a total of 441 chunks being
deployed to the client at any one time. All 441 chunks are deployed before the
client is permitted to interact with the world.

Bravo does something slightly different; while Bravo also has a floating
pattern above each of its players, the pattern is a circle with the same
diameter as the Notchian server’s square. This effectively results in a circle
of 315 chunks deployed to the client; a savings of nearly 30% in memory and
bandwidth for chunks. Additionally, only the 50 closest chunks are deployed
before the client is spawned and permitted to interact with the world.

Inventory

The Notchian viewpoint of items in the inventory is as a list of slots. Each
slot holds an item, identified by a single number, and can hold 1 to 64
instances of that item. Some items can be damaged. Some items are completely
different depending on their damage.

Bravo views item identifiers as a composite key of a primary and secondary
identifier. In this scheme, items with identical primary keys and different
secondary keys are properly segregated, and item damage is stored as the
secondary key, keeping items with differing amounts of damage from occupying
the same slot. This avoids an entire class of bugs, where items can be
stacked and unstacked to change the amount of damage on them, which have
historically plagued the Notchian codebase.

Minecarts

Bravo permits minecart tracks to be placed on glass.

Philosophy

Design Decisions

A design decision is a core component of building a large piece of
software. Roughly stated, it is a choice to use a certain language, library,
or methodology when constructing software. Design decisions can be
metaphysical, and affect other design decisions. This is merely a way of
talking formally and reasonably about choices made in producing Bravo.

This section is largely dedicated to members of the community that have
decided that things in Bravo are done incorrectly. While we agree with the need
of the community to constructively criticize itself, some things are not worth
debating again.

Python

Python is occasionally seen as slow compared to statically typed languages.
Some benchmarks certainly are very unflattering to Python, but we feel that
there are several advantages to Python which are too important to sacrifice:

	Rapid prototyping

	Algorithmic simplicity

	Simple types

	Twisted

Additionally, with the advent of PyPy [http://pypy.org/], the question of whether a full-fledged
Python application is too slow for consumer hardware is rapidly fading.

Compared to Other Languages

C++

Mineserver [http://mineserver.be/] was a cool attempt to write a custom server in C++. It still
receives occasional updates, but never attempted the more ambitious features.

Haskell

The Bravo team attempted to port Bravo to Haskell. It was unsuccessful.
Haskell does not yet have a mature library for creating massively event-driven
network servers.

No Extension Modules

There are several good reasons to not ship “extension modules,” pieces of code
written in Fortran, C, or C++ which are compiled and dynamically linked
against the CPython extension API. Some of them are:

	Portability

	Python and C have different scopes of portability, and the scope of the C API
for Python is limited practically to CPython. Each module we depend on
externally has the potential to reduce the number of platforms we can
support.

	Maintainability

	C is not maintainable on the same scale as Python, even with (and, some would
argue, especially with) the extremely structured syntax required to interface
with the C API for Python. Cython is maintainable, but does not solve the
other problems.

	Dependencies

	Somebody has to provide binary versions of the modules for all the people
without compilers. Practically, this does mean that Win32 users need to have
binaries provided for them, as long as our thin veneer of Win32 compatibility
holds up.

	Forward-compatibility

	Frankly, extension modules are forever incompatible with the spirit of PyPy,
and require, at bare minimum, a recompile and prayer before they’ll
cooperate. We support running Bravo on PyPy, and on this alone, we wish to
not depend on them.

Frankly, most extension modules aren’t worth this trouble. Extension modules
which are well-tested, ubiquitous, and actively maintained, are generally
going to be favored more than extensions which break, are hard to obtain or
compile, or are derelict.

Twisted

Apparently, in this day and age, people are still of the opinion that Twisted [http://twistedmatrix.com/]
is too big and not necessary for speedy, relatively bug-free networking.
Nothing written here will convince these people; so, instead, I offer this
promise: If anybody contributes a patch which makes Bravo not depend on
Twisted, does not degrade its performance measureably, and does not break any
part of Bravo, then I will acknowledge and apply it.

No Threads

Threads are evil. They are not an effective concurrency model in most cases.
Tests done with offloading various parts of Bravo’s CPU-bound tasks to threads
have shown that threads are a liability in most cases, enforcing locking
overhead while providing little to no actual benefit in terms of speed and
latency.

However, as a concession to the CPU-centric nature of geometry generation,
Bravo will offload all geometry generation to separate processes when Ampoule
is available and enabled in its configuration file, which does yield massive
improvements to server interactivity.

Extreme Extensibility

Bravo is remarkably extensible. Pieces of functionality that are considered
essential or “core” are treated as plugins and dynamically loaded on server
startup. Actual services are dynamically started and stopped as needed.
Bravo’s core does not even provide Minecraft services by default.

The reason for this extreme plugin approach is that Bravo was designed to be
easily totally convertible; in theory, a proper set of configuration files and
external plugins can completely change Bravo’s behavior.

Versioning

Bravo’s version numbers are not very complex. Here’s a quick breakdown.

Major version numbers indicate the core structure of Bravo. A major version
bump probably means that lots of modules changed names, or that something
significant was added. In practice, this probably means that an entirely new
set of protocols was added. (The next major version bump will probably be for
InfiniCraft support.)

Minor version numbers are for changes to interfaces or any other change which
means that external code relying on Bravo’s API will have to be updated.

Patchlevel version numbers aren’t currently used, but probably will signify
that the release is a bugfix-only release with no significant change in
functionality.

The hope of all of this is that, given a series of releases with the same
major and minor, plugins do not have to be changed.

How to administer Bravo

While Bravo is not a massively complex piece of software on its own, the
plugins and features that are available in Bravo can be overwhelming and
daunting. This page is a short but comprehensive overview for new
administrators looking to set up and run Bravo instances.

Configuration

Bravo uses a single configuration file, bravo.ini, for all of its settings.
The file is in standard INI format. Note that this is not the extended INI
format of Windows 32-bit configuration settings, nor the format of PHP’s
configuration files. Specifically, bravo.ini is parsed and written using
Python’s ConfigParser [https://docs.python.org/2/library/configparser.html#ConfigParser.ConfigParser] class.

An example configuration file is provided as bravo.ini.example,
and is a good starting point for new configurations.

bravo.ini should live in one of three locations:

	/etc/bravo

	~/.bravo

	The working directory

All three locations will be checked, in that order, and more-recently-loaded
configurations will override configurations in previous directories. For
sanity purposes, it is highly encouraged to either use /etc/bravo
if running as root, or ~/.bravo if running as a normal user.

The configuration file is divided up into sections. Each section starts
with a name, like [section name], and only ends when another section
starts, or at the end of the file.

A note on lists

Bravo uses long lists of named plugins, and has special facilities for
handling them.

If an option takes a list of choices, then the choices should be
comma-separated. They may be on the same line, or multiple lines; spaces do
not matter much. (As an aside, spaces matter inside plugin names, but
Bravo’s plugin collection uses only underscores, not spaces, so this should
not matter. If it does, bug your plugin authors to fix their code.)

Additionally, to simplify plugin naming, many plugin configuration options
support wildcards. Currently, the “*” wildcard is supported. A “*”
anywhere in an option list will be internally expanded to all of the
available choices for that option.

The special notation “-” before a name will forcibly remove that name from a
list.

Putting everything together, an example set of configurations might look like
this:

some_option = first, second, third
some_newline_option = first, second,
 third, fourth
some_wildcard_option = *
some_picky_option = *, -fifth
another_picky_option = -fifth, -sixth, *
a_weird_but_valid_option = seventh, -seventh

General settings

These settings apply to all of Bravo. This section is named [bravo].

	fancy_console

	Whether to enable the fancy console in standalone mode. This setting will
be overridden if the fancy console cannot be set up; e.g. on Win32
systems.

	ampoule

	Whether asynchronous chunk generators will be used. This can result in
massive improvements to Bravo’s latency and responsiveness, and defaults
to enabled. This setting will be overridden if Ampoule cannot be found.

World settings

These settings only apply to a specific world. Worlds are created by starting
the section of the configuration with “world”; an example world section might
start with [world example].

	port

	Which port to run on. Must be a number between 0 and 65535. Note that
ports below 1024 are typically privileged and cannot be bound by non-root
users.

	host

	The hostname to bind to. Defaults to no hostname, which is usually correct
for most people. If you don’t know what this is, you don’t need it.

	url

	The path to the folder to use for loading and saving world data. Must be a
valid URL.

	serializer

	Which serializer to use for saving worlds. Currently, the “anvil”
serializers is provided for compatibility with modern MC clients and
servers.

	seed

	A numeric seed to use for terrain generation. If omitted, the seed will be
generated when the world is created. This option only affects new worlds;
existing worlds already have a seed.

Plugin Data Files

Plugins have a standardized per-world storage. Only a few of the plugins that
ship with Bravo use this storage. Each plugin has complete autonomy over its
data files, but the file name varies depending on the serializer used to store
the world. For example, when using the Alpha and Beta world serializers, the
file name is <plugin>.dat, where <plugin> is the name of the plugin.

Bravo worlds have per-world IP ban lists. The IP ban lists are stored under
the plugin name “banned_ips”, with one IP address per line.

Warps and homes are stored in hey0 CSV format, in “warps” and “homes”.

Plugins

Bravo is highly configurable and extensible. The plugins shipped with Bravo
are listed here, for convenience.

Packs

Beta

The Beta plugin pack, called “beta”, provides all of Bravo’s Beta
compatibility in one single line of configuration.

Terrain generators

The following terrain generators may be added to the generators setting
in your bravo.ini under the [world] section. The order in which
these appear in the list is not important.

Beaches

Generates simple beaches.

Beaches are areas of sand around bodies of water. This generator will form
beaches near all bodies of water regardless of size or composition; it
will form beaches at large seashores and frozen lakes. It will even place
beaches on one-block puddles.

Boring

Generates boring slabs of flat stone.

Grass

Grows grass on exposed dirt.

Caves

Carves caves and seams out of terrain.

Cliffs

Generates sheer cliffs.

Complex

Generates islands of stone and other ridiculous things.

Erosion

Erodes stone surfaces into dirt.

Float

Rips chunks out of the map, to create surreal chunks of floating land.

Safety

Generates terrain features essential for the safety of clients, such as the
indestructible bedrock at Y = 0.

Warning

Removing this generator will permit players to dig through the
bottom of the world.

Simplex

Generates organic-looking, continuously smooth terrain.

Saplings

Plants saplings at relatively silly places around the map.

Note

This generator only places saplings, and is not responsible for the
growth of trees over time. The trees automaton should be used for
ensuring that trees will grow.

Ore

Places ores and clay.

Watertable

Creates a flat water table half-way up the map (Y = 64).

Automatons

Automatons are simple tasks which examine and update the world as the world
loads and displays data to players. They are able to do periodic or delayed
work to keep the world properly. (The mental image of small robotic gardeners
roving across the hills and valleys trimming grass and dusting trees is quite
compelling and adorable!)

Automatons marked with (Beta) provide Beta compatibility and should probably
be enabled.

	lava: Enable physics for placed lava springs. (Beta)

	trees: Turn planted saplings into trees. (Beta)

	water: Enable physics for placed water springs. (Beta)

Seasons

Bravo’s years are 360 days long, with each day being 20 minutes long. For
those who would like seasons, the following seasons be added to the
seasons setting in your bravo.ini under the [world] section.

Winter

Causes water to freeze, and snow to be placed on certain block types. Winter
starts on the first day of the year.

Spring

Thaws frozen water and removes snow as that was placed during Winter. Spring
starts on the 90th day of the the year.

Hooks

Hooks are small pluggable pieces of code used to add event-driven
functionality to Bravo.

Build hooks

Hooks marked with (Beta) provide Beta compatibility and should probably be
enabled.

	alpha_sand_gravel: Make sand and gravel fall as if affected by gravity.
(Beta)

	bravo_snow: Make snow fall as if affected by gravity.

	build: Enable placement of blocks from inventory onto the terrain.
(Beta)

	redstone: Enable physics for placed redstone. (Beta)

	tile: Register tiles. Required for signs, furnaces, chests, etc. (Beta)

	tracks: Align minecart tracks. (Beta)

Dig hooks

	alpha_sand_gravel: Make sand and gravel fall as if affected by gravity.
(Beta)

	alpha_snow: Destroy snow when it is dug or otherwise disturbed. (Beta)

	bravo_snow: Make snow fall as if affected by gravity.

	give: Spawn pickups for blocks and items destroyed by digging. (Beta)

	lava: Enable physics for lava. (Beta)

	redstone: Enable physics for redstone. (Beta)

	torch: Destroy torches that are not attached to walls or floors. (Beta)

	tracks: Align minecart tracks. (Beta)

	water: Enable physics for water. (Beta)

Troubleshooting

Configuring

When I connect to the server, the client gets an “End of Stream” error and the
server log says something about “ConsoleRPCProtocol”.

You are connecting to the wrong port.

Bravo always runs an RPC console by default. This console isn’t directly
accessible from clients. In order to connect a client, you must configure a
world and connect to that world. See the example bravo.ini configuration file
for an example of how to configure a world.

My world is snowy. I didn’t want this.

In bravo.ini, change your seasons list to exclude winter. A possible
incantation might be the following:

seasons = *, -winter

Errors

I get lots of RuntimeErrors from Exocet.

Upgrade to a newer Bravo which doesn’t use Exocet.

I have an error involving construct!

Install Construct. It is a required package.

I have an error involving JSON!

If you update to a newer Bravo, you won’t need JSON support.

I have an error involving IRC/AMP/ListOf!

Your Twisted is too old. You really do need Twisted 11.0 or newer.

I have an error ``TypeError: an integer is required`` when starting Bravo!

Your Twisted is too old. You really do need Twisted 11.0 or newer.

I am running as root on a Unix system and twistd cannot find
``bravo.service``. What’s going on?

For security reasons, twistd doesn’t look in non-system directories as root.
If you insist on running as root, try an incantation like the following,
setting PYTHONPATH:

PYTHONPATH=. twistd -n bravo

But seriously, stop running as root.

Help!

If you are having a hard time figuring something out, encountered a bug,
or have ideas, feel free to reach out to the community in one of several
different ways:

	IRC: #Bravo on FreeNode

	Post to our issue tracker [https://github.com/bravoserver/bravo/issues].

	Speak up over our mailing list [http://lists.bravoserver.org/listinfo.cgi/bravo-dev-bravoserver.org].

Web Service

Bravo comes with a simple web service which can be used to monitor the status
of your server.

Configuration

Only one web service can be defined; it uses the configuration key [web]
and has only one parameter, port, specifying the port on which to listen.
An example configuration snippet might look like this:

[web]
port = 8080

Extending Bravo

Bravo is designed to be highly extensible. This document is a short guide to
the basics of writing extension code for Bravo.

Asynchronous Ideas

Bravo, being built on Twisted, has inherited most of the concepts of
asynchronous control flow from Twisted, and uses them liberally. Nearly every
plugin method is permitted to return a Deferred in place of their actual
return value.

The Good, the Bad, and the Ugly

There are a lot of modules in the standard library. Some of them should not be
used in Bravo.

The following modules are blacklisted because they conflict with, or are slow
compared to, Twisted’s own systems:

These modules are bad. All of them duplicate functionality available in
Twisted, and do it in ways that can interfere with Twisted’s ability to do
things in a speedy manner. Do not use them under any circumstances.

	asyncore

	multiprocessing

	socket

	subprocess

	thread

	threading

These modules are ugly. They can quite easily corrupt memory or cause server
crashes, and should be used with extreme caution and very good reasons. If you
don’t know exactly what you are doing, don’t use these.

	ctypes

	gc

	imp

	inspect

Parameters

Hooks should accept a single named parameter, factory, which will be
provided when the hook is loaded.

The Flexibility of Commands

Bravo’s command interface is designed to feel like a regular class instead of
a specialized plugin, while still providing lots of flexibility to authors.
Let’s look at a simple plugin:

class Hello(object):
 """
 Say hello to the world.
 """

 implements(IChatCommand)

 def chat_command(self, username, parameters):
 greeting = "Hello, %s!" % username
 yield greeting

 name = "hello"
 aliases = tuple()
 usage = ""

This command is a simple greeter which merely echoes a salutation to its
caller. It is an IChatCommand, so it only works in the in-game chat, but
that should not be a problem, since there is an internal, invisible adaptation
from IChatCommand to IConsoleCommand. This means that chat commands
are also valid console commands, without any action on your part! Pretty cool,
huh?

So, how does this plugin actually work? Well, nearly every line of this plugin
is required. The first thing you’ll notice is that this plugin has a class
docstring. Docstrings on commands are required; the docstring is used to
provide help text. As with all chat commands, this plugin
implements(IChatCommand), which lets it be discovered as a command.

The plugin implements the required chat_command(username, parameters),
which will be called when a player uses the command. An interesting thing to
note is that this plugin yields its return value; commands may return any
iterable of lines, including a generator!

Finally, the plugin finishes with more required interface attributes: a name
which will be used to call the command, a (possibly empty) list of aliases
which can also be used to call the command, and a (possibly empty) usage
string.

Noise

Bravo, like all Minecraft terrain generators, relies heavily on randomness to
generate its terrain. In order to understand some of the design decisions in
the terrain generator, it is required to understand noise and its various
properties.

Probability

Noise’s probability distribution is not even, equal, or normal. It is
symmetric about 0, meaning that the absolute value of noise has all of the
same relative probabilities as the entire range of noise.

When binned into a histogram with 100 bins, a few bins become very large.

	Bin
	Probability

	0.00
	2.6150%

	0.49
	2.2262%

	0.59
	1.8274%

	0.43
	1.8248%

	0.42
	1.7888%

	0.58
	1.5939%

	0.48
	1.5194%

	0.41
	1.5118%

	0.18
	1.4715%

	0.24
	1.4366%

	0.54
	1.4072%

	0.22
	1.3825%

	0.50
	1.3786%

	0.44
	1.3696%

	0.26
	1.3680%

Core

These modules comprise the core functionality of Bravo.

	beta – Minecraft Beta
	Packets

	Protocols

	Factories

	blocks – Block descriptions

	chunk – Chunk data structures

	entity – Entities

	furnace – Furnace Tile

	ibravo – Interfaces
	Interface Bases

	Plugins

	Hooks

	infini – InfiniCraft
	Packets

	Protocols

	Factories

	inventory – Inventories

	location – Locations

	plugin – Plugin loader

	stdio – Console support

	world – Worlds

beta – Minecraft Beta

Protocols and factories for Minecraft Beta, the
Mojang-authored Minecraft which everybody knows and loves.

Packets

Protocols

Factories

blocks – Block descriptions

The blocks module contains descriptions of blocks.

	
class bravo.blocks.Block(slot, name, secondary=0, drop=None, replace=0, ratio=1, quantity=1, dim=16, breakable=True, orientation=None, vanishes=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A model for a block.

There are lots of rules and properties specific to different types of
blocks. This class encapsulates those properties in a singleton-style
interface, allowing many blocks to be referenced in one location.

The basic idea of this class is to provide some centralized data and
information about blocks, in order to abstract away as many special cases
as possible. In general, if several blocks all have some special behavior,
then it may be worthwhile to store data describing that behavior on this
class rather than special-casing it in multiple places.

	Parameters:	
	slot (int [https://docs.python.org/2/library/functions.html#int]) – The index of this block. Must be globally unique.

	name (str [https://docs.python.org/2/library/functions.html#str]) – A common name for this block.

	secondary (int [https://docs.python.org/2/library/functions.html#int]) – The metadata/damage/secondary attribute for this
block. Defaults to zero.

	drop (tuple [https://docs.python.org/2/library/functions.html#tuple]) – The type of block that should be dropped when an
instance of this block is destroyed. Defaults to the block value,
to drop instances of this same type of block. To indicate that
this block does not drop anything, set to air (0, 0).

	replace (int [https://docs.python.org/2/library/functions.html#int]) – The type of block to place in the map when
instances of this block are destroyed. Defaults to air.

	ratio (float [https://docs.python.org/2/library/functions.html#float]) – The probability of this block dropping a block
on destruction.

	quantity (int [https://docs.python.org/2/library/functions.html#int]) – The number of blocks dropped when this block
is destroyed.

	dim (int [https://docs.python.org/2/library/functions.html#int]) – How much light dims when passing through this kind
of block. Defaults to 16 = opaque block.

	breakable (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether this block is diggable, breakable,
bombable, explodeable, etc. Only a few blocks actually genuinely
cannot be broken, so the default is True.

	orientation (tuple [https://docs.python.org/2/library/functions.html#tuple]) – The orientation data for a block. See
orientable() for an explanation. The data should be in standard
face order.

	vanishes (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether this block vanishes, or is replaced by,
another block when built upon.

	
face(metadata)

	Retrieve the face for given metadata corresponding to an orientation,
or None if the metadata is invalid for this block.

This method only returns valid data for orientable blocks; check
orientable() first.

	
orientable()

	Whether this block can be oriented.

Orientable blocks are positioned according to the face on which they
are built. They may not be buildable on all faces. Blocks are only
orientable if their metadata can be used to directly and uniquely
determine the face against which they were built.

Ladders are orientable, signposts are not.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Returns:	True if this block can be oriented, False if not.

	
orientation(face)

	Retrieve the metadata for a certain orientation, or None if this block
cannot be built against the given face.

This method only returns valid data for orientable blocks; check
orientable() first.

	
class bravo.blocks.Item(slot, name, secondary=0)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

An item.

	
bravo.blocks.armor_boots = (301, 305, 309, 313, 317)

	List of slots of boots.

	
bravo.blocks.armor_chestplates = (299, 303, 307, 311, 315)

	List of slots of chestplates.

Note that slot 303 (chainmail chestplate) is a chestplate, even though it is
not normally obtainable.

	
bravo.blocks.armor_helmets = (86, 298, 302, 306, 310, 314)

	List of slots of helmets.

Note that slot 86 (pumpkin) is a helmet.

	
bravo.blocks.armor_leggings = (300, 304, 308, 312, 316)

	List of slots of leggings.

	
bravo.blocks.blocks = {0: Block((0, 0) 'air': unbreakable, transparent), 1: Block((1, 0) 'stone': drops 1 (key (4, 0), rate 100.00%)), 2: Block((2, 0) 'grass': drops 1 (key (3, 0), rate 100.00%)), 3: Block((3, 0) 'dirt'), 4: Block((4, 0) 'cobblestone'), 5: Block((5, 0) 'wood'), 'wooden-door-block': Block((64, 0) 'wooden-door-block': drops 1 (key (324, 0), rate 100.00%)), 7: Block((7, 0) 'bedrock': unbreakable), 8: Block((8, 0) 'water': unbreakable, translucent (3)), 9: Block((9, 0) 'spring': unbreakable, translucent (3)), 10: Block((10, 0) 'lava': unbreakable, transparent), 11: Block((11, 0) 'lava-spring': unbreakable, transparent), 12: Block((12, 0) 'sand'), 13: Block((13, 0) 'gravel': drops 1 (key (318, 0), rate 10.00%)), 14: Block((14, 0) 'gold-ore'), 15: Block((15, 0) 'iron-ore'), 16: Block((16, 0) 'coal-ore': drops 1 (key (263, 0), rate 100.00%)), 17: Block((17, 3) 'jungle-log': drops 1 (key (17, 0), rate 100.00%)), 18: Block((18, 3) 'jungle-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 19: Block((19, 0) 'sponge'), 20: Block((20, 0) 'glass': transparent, drops 1 (key (0, 0), rate 100.00%)), 21: Block((21, 0) 'lapis-lazuli-ore': drops 6 (key (351, 4), rate 100.00%)), 22: Block((22, 0) 'lapis-lazuli-block'), 23: Block((23, 0) 'dispenser'), 24: Block((24, 0) 'sandstone'), 25: Block((25, 0) 'note-block'), 26: Block((26, 0) 'bed-block': drops 1 (key (355, 0), rate 100.00%)), 'redstone-ore': Block((73, 0) 'redstone-ore': drops 5 (key (331, 0), rate 100.00%)), 28: Block((28, 0) 'detector-rail'), 29: Block((29, 0) 'sticky-piston'), 30: Block((30, 0) 'spider-web'), 31: Block((31, 0) 'tall-grass'), 32: Block((32, 0) 'shrub'), 33: Block((33, 0) 'piston'), 35: Block((35, 15) 'black-wool': drops 1 (key (35, 0), rate 100.00%)), 6: Block((6, 3) 'jungle-sapling': transparent, drops 1 (key (6, 0), rate 100.00%)), 38: Block((38, 0) 'rose': transparent), 39: Block((39, 0) 'brown-mushroom': transparent), 40: Block((40, 0) 'red-mushroom': transparent), 'rose': Block((38, 0) 'rose': transparent), 42: Block((42, 0) 'iron'), 43: Block((43, 0) 'double-step'), 44: Block((44, 3) 'cobblestone-step': transparent, drops 1 (key (44, 0), rate 100.00%)), 45: Block((45, 0) 'brick'), 46: Block((46, 0) 'tnt'), 47: Block((47, 0) 'bookshelf'), 48: Block((48, 0) 'mossy-cobblestone'), 49: Block((49, 0) 'obsidian'), 50: Block((50, 0) 'torch': transparent), 'wood': Block((5, 0) 'wood'), 52: Block((52, 0) 'mob-spawner': transparent, drops 1 (key (0, 0), rate 100.00%)), 53: Block((53, 0) 'wooden-stairs': transparent), 54: Block((54, 0) 'chest'), 55: Block((55, 0) 'redstone-wire': transparent), 56: Block((56, 0) 'diamond-ore': drops 1 (key (264, 0), rate 100.00%)), 57: Block((57, 0) 'diamond-block'), 58: Block((58, 0) 'workbench'), 'gravel': Block((13, 0) 'gravel': drops 1 (key (318, 0), rate 10.00%)), 'spider-web': Block((30, 0) 'spider-web'), 61: Block((61, 0) 'furnace'), 62: Block((62, 0) 'burning-furnace': drops 1 (key (61, 0), rate 100.00%)), 63: Block((63, 0) 'signpost': transparent, drops 1 (key (323, 0), rate 100.00%)), 64: Block((64, 0) 'wooden-door-block': drops 1 (key (324, 0), rate 100.00%)), 65: Block((65, 0) 'ladder': transparent), 66: Block((66, 0) 'tracks': transparent), 'sapling': Block((6, 0) 'sapling': transparent), 68: Block((68, 0) 'wall-sign': transparent, drops 1 (key (323, 0), rate 100.00%)), 69: Block((69, 0) 'lever': transparent), 70: Block((70, 0) 'stone-plate': transparent), 71: Block((71, 0) 'iron-door-block': drops 1 (key (330, 0), rate 100.00%)), 72: Block((72, 0) 'wooden-plate': transparent), 73: Block((73, 0) 'redstone-ore': drops 5 (key (331, 0), rate 100.00%)), 74: Block((74, 0) 'glowing-redstone-ore': drops 5 (key (331, 0), rate 100.00%)), 75: Block((75, 0) 'redstone-torch-off': transparent), 76: Block((76, 0) 'redstone-torch': transparent), 77: Block((77, 0) 'stone-button': transparent), 78: Block((78, 0) 'snow'), 79: Block((79, 0) 'ice': translucent (3), becomes 9, drops 1 (key (0, 0), rate 100.00%)), 80: Block((80, 0) 'snow-block'), 81: Block((81, 0) 'cactus': transparent), 82: Block((82, 0) 'clay': drops 4 (key (337, 0), rate 100.00%)), 83: Block((83, 0) 'reed': transparent, drops 1 (key (338, 0), rate 100.00%)), 84: Block((84, 0) 'jukebox'), 'iron-ore': Block((15, 0) 'iron-ore'), 86: Block((86, 0) 'pumpkin'), 87: Block((87, 0) 'brimstone'), 88: Block((88, 0) 'slow-sand'), 89: Block((89, 0) 'lightstone': drops 1 (key (348, 0), rate 100.00%)), 90: Block((90, 0) 'portal': transparent), 91: Block((91, 0) 'jack-o-lantern'), 92: Block((92, 0) 'cake-block': transparent), 93: Block((93, 0) 'redstone-repeater-off': transparent, drops 1 (key (356, 0), rate 100.00%)), 94: Block((94, 0) 'redstone-repeater-on': transparent, drops 1 (key (356, 0), rate 100.00%)), 95: Block((95, 0) 'locked-chest'), 96: Block((96, 0) 'trapdoor'), 97: Block((97, 0) 'hidden-silverfish': drops 1 (key (0, 0), rate 100.00%)), 98: Block((98, 0) 'stone-brick'), 99: Block((99, 0) 'huge-brown-mushroom': drops 2 (key (39, 0), rate 100.00%)), 100: Block((100, 0) 'huge-red-mushroom': drops 2 (key (40, 0), rate 100.00%)), 101: Block((101, 0) 'iron-bars'), 102: Block((102, 0) 'glass-pane'), 103: Block((103, 0) 'melon'), 104: Block((104, 0) 'pumpkin-stem': drops 3 (key (361, 0), rate 100.00%)), 105: Block((105, 0) 'melon-stem': drops 3 (key (362, 0), rate 100.00%)), 106: Block((106, 0) 'vine'), 107: Block((107, 0) 'fence-gate'), 'diamond-ore': Block((56, 0) 'diamond-ore': drops 1 (key (264, 0), rate 100.00%)), 'glowing-redstone-ore': Block((74, 0) 'glowing-redstone-ore': drops 5 (key (331, 0), rate 100.00%)), 'tall-grass': Block((31, 0) 'tall-grass'), 111: Block((111, 0) 'lily-pad': drops 1 (key (0, 0), rate 100.00%)), 112: Block((112, 0) 'nether-brick'), 'crops': Block((59, 0) 'crops': transparent), 'sand': Block((12, 0) 'sand'), 115: Block((115, 0) 'nether-wart-block': drops 1 (key (372, 0), rate 100.00%)), 'clay': Block((82, 0) 'clay': drops 4 (key (337, 0), rate 100.00%)), 'lever': Block((69, 0) 'lever': transparent), 'double-step': Block((43, 0) 'double-step'), 'bed-block': Block((26, 0) 'bed-block': drops 1 (key (355, 0), rate 100.00%)), 129: Block((129, 0) 'emerald-ore'), 'workbench': Block((58, 0) 'workbench'), 'orange-wool': Block((35, 1) 'orange-wool': drops 1 (key (35, 0), rate 100.00%)), 'hidden-silverfish': Block((97, 0) 'hidden-silverfish': drops 1 (key (0, 0), rate 100.00%)), 'fence': Block((85, 0) 'fence': transparent), 'dark-green-wool': Block((35, 13) 'dark-green-wool': drops 1 (key (35, 0), rate 100.00%)), 'spring': Block((9, 0) 'spring': unbreakable, translucent (3)), 'torch': Block((50, 0) 'torch': transparent), 'vine': Block((106, 0) 'vine'), 109: Block((109, 0) 'stone-brick-stairs'), 'sponge': Block((19, 0) 'sponge'), 'redstone-repeater-off': Block((93, 0) 'redstone-repeater-off': transparent, drops 1 (key (356, 0), rate 100.00%)), 'melon': Block((103, 0) 'melon'), 'iron-bars': Block((101, 0) 'iron-bars'), 110: Block((110, 0) 'mycelium': drops 1 (key (3, 0), rate 100.00%)), 'cactus': Block((81, 0) 'cactus': transparent), 'sticky-piston': Block((29, 0) 'sticky-piston'), 'huge-red-mushroom': Block((100, 0) 'huge-red-mushroom': drops 2 (key (40, 0), rate 100.00%)), 'brown-mushroom': Block((39, 0) 'brown-mushroom': transparent), 27: Block((27, 0) 'powered-rail'), 'shrub': Block((32, 0) 'shrub'), 'birch-log': Block((17, 2) 'birch-log': drops 1 (key (17, 0), rate 100.00%)), 113: Block((113, 0) 'nether-brick-fence'), 'blue-wool': Block((35, 11) 'blue-wool': drops 1 (key (35, 0), rate 100.00%)), 114: Block((114, 0) 'nether-brick-stairs'), 'ice': Block((79, 0) 'ice': translucent (3), becomes 9, drops 1 (key (0, 0), rate 100.00%)), 108: Block((108, 0) 'brick-stairs'), 'piston': Block((33, 0) 'piston'), 'pine-log': Block((17, 1) 'pine-log': drops 1 (key (17, 0), rate 100.00%)), 'nether-wart-block': Block((115, 0) 'nether-wart-block': drops 1 (key (372, 0), rate 100.00%)), 'lightstone': Block((89, 0) 'lightstone': drops 1 (key (348, 0), rate 100.00%)), 'stone-step': Block((44, 0) 'stone-step': transparent), 'cake-block': Block((92, 0) 'cake-block': transparent), 'dirt': Block((3, 0) 'dirt'), 'pumpkin': Block((86, 0) 'pumpkin'), 'red-wool': Block((35, 14) 'red-wool': drops 1 (key (35, 0), rate 100.00%)), 'water': Block((8, 0) 'water': unbreakable, translucent (3)), 'step': Block((44, 0) 'step': transparent), 'jungle-leaf': Block((18, 3) 'jungle-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 'nether-brick': Block((112, 0) 'nether-brick'), 37: Block((37, 0) 'flower': transparent), 'emerald-ore': Block((129, 0) 'emerald-ore'), 'stone': Block((1, 0) 'stone': drops 1 (key (4, 0), rate 100.00%)), 'brown-wool': Block((35, 12) 'brown-wool': drops 1 (key (35, 0), rate 100.00%)), 'jungle-sapling': Block((6, 3) 'jungle-sapling': transparent, drops 1 (key (6, 0), rate 100.00%)), 'normal-leaf': Block((18, 0) 'normal-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 'leaves': Block((18, 0) 'leaves': translucent (1), drops 1 (key (6, 0), rate 11.11%)), 'cyan-wool': Block((35, 9) 'cyan-wool': drops 1 (key (35, 0), rate 100.00%)), 'tracks': Block((66, 0) 'tracks': transparent), 59: Block((59, 0) 'crops': transparent), 'fence-gate': Block((107, 0) 'fence-gate'), 41: Block((41, 0) 'gold'), 'wooden-stairs': Block((53, 0) 'wooden-stairs': transparent), 'powered-rail': Block((27, 0) 'powered-rail'), 'jukebox': Block((84, 0) 'jukebox'), 'yellow-wool': Block((35, 4) 'yellow-wool': drops 1 (key (35, 0), rate 100.00%)), 'magenta-wool': Block((35, 2) 'magenta-wool': drops 1 (key (35, 0), rate 100.00%)), 'detector-rail': Block((28, 0) 'detector-rail'), 'normal-sapling': Block((6, 0) 'normal-sapling': transparent), 'stone-stairs': Block((67, 0) 'stone-stairs': transparent), 'diamond-block': Block((57, 0) 'diamond-block'), 133: Block((133, 0) 'emerald-block'), 'brimstone': Block((87, 0) 'brimstone'), 'melon-stem': Block((105, 0) 'melon-stem': drops 3 (key (362, 0), rate 100.00%)), 'log': Block((17, 0) 'log'), 'brick-stairs': Block((108, 0) 'brick-stairs'), 'snow-block': Block((80, 0) 'snow-block'), 'trapdoor': Block((96, 0) 'trapdoor'), 'lava-spring': Block((11, 0) 'lava-spring': unbreakable, transparent), 'red-mushroom': Block((40, 0) 'red-mushroom': transparent), 'light-blue-wool': Block((35, 3) 'light-blue-wool': drops 1 (key (35, 0), rate 100.00%)), 51: Block((51, 0) 'fire': transparent), 'bedrock': Block((7, 0) 'bedrock': unbreakable), 'pine-sapling': Block((6, 1) 'pine-sapling': transparent, drops 1 (key (6, 0), rate 100.00%)), 'lily-pad': Block((111, 0) 'lily-pad': drops 1 (key (0, 0), rate 100.00%)), 'brick': Block((45, 0) 'brick'), 'mossy-cobblestone': Block((48, 0) 'mossy-cobblestone'), 'jungle-log': Block((17, 3) 'jungle-log': drops 1 (key (17, 0), rate 100.00%)), 'fire': Block((51, 0) 'fire': transparent), 'signpost': Block((63, 0) 'signpost': transparent, drops 1 (key (323, 0), rate 100.00%)), 'glass': Block((20, 0) 'glass': transparent, drops 1 (key (0, 0), rate 100.00%)), 'reed': Block((83, 0) 'reed': transparent, drops 1 (key (338, 0), rate 100.00%)), 'lime-wool': Block((35, 5) 'lime-wool': drops 1 (key (35, 0), rate 100.00%)), 'bookshelf': Block((47, 0) 'bookshelf'), 'gold': Block((41, 0) 'gold'), 'wall-sign': Block((68, 0) 'wall-sign': transparent, drops 1 (key (323, 0), rate 100.00%)), 'normal-log': Block((17, 0) 'normal-log'), 'tnt': Block((46, 0) 'tnt'), 'pine-leaf': Block((18, 1) 'pine-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 'wool': Block((35, 0) 'wool'), 'birch-sapling': Block((6, 2) 'birch-sapling': transparent, drops 1 (key (6, 0), rate 100.00%)), 60: Block((60, 0) 'soil': transparent, drops 1 (key (3, 0), rate 100.00%)), 'jack-o-lantern': Block((91, 0) 'jack-o-lantern'), 'wooden-plate': Block((72, 0) 'wooden-plate': transparent), 'air': Block((0, 0) 'air': unbreakable, transparent), 'iron': Block((42, 0) 'iron'), 'dispenser': Block((23, 0) 'dispenser'), 'grass': Block((2, 0) 'grass': drops 1 (key (3, 0), rate 100.00%)), 'redstone-wire': Block((55, 0) 'redstone-wire': transparent), 'black-wool': Block((35, 15) 'black-wool': drops 1 (key (35, 0), rate 100.00%)), 'cobblestone-step': Block((44, 3) 'cobblestone-step': transparent, drops 1 (key (44, 0), rate 100.00%)), 'gold-ore': Block((14, 0) 'gold-ore'), 'huge-brown-mushroom': Block((99, 0) 'huge-brown-mushroom': drops 2 (key (39, 0), rate 100.00%)), 'white-wool': Block((35, 0) 'white-wool'), 'stone-button': Block((77, 0) 'stone-button': transparent), 'soil': Block((60, 0) 'soil': transparent, drops 1 (key (3, 0), rate 100.00%)), 'locked-chest': Block((95, 0) 'locked-chest'), 'glass-pane': Block((102, 0) 'glass-pane'), 'redstone-torch': Block((76, 0) 'redstone-torch': transparent), 'iron-door-block': Block((71, 0) 'iron-door-block': drops 1 (key (330, 0), rate 100.00%)), 'light-gray-wool': Block((35, 8) 'light-gray-wool': drops 1 (key (35, 0), rate 100.00%)), 'nether-brick-fence': Block((113, 0) 'nether-brick-fence'), 'stone-brick': Block((98, 0) 'stone-brick'), 'purple-wool': Block((35, 10) 'purple-wool': drops 1 (key (35, 0), rate 100.00%)), 'birch-leaf': Block((18, 2) 'birch-leaf': translucent (1), drops 1 (key (6, 0), rate 100.00%)), 'coal-ore': Block((16, 0) 'coal-ore': drops 1 (key (263, 0), rate 100.00%)), 'nether-brick-stairs': Block((114, 0) 'nether-brick-stairs'), 'sandstone': Block((24, 0) 'sandstone'), 'snow': Block((78, 0) 'snow'), 'lava': Block((10, 0) 'lava': unbreakable, transparent), 'stone-brick-stairs': Block((109, 0) 'stone-brick-stairs'), 'chest': Block((54, 0) 'chest'), 'gray-wool': Block((35, 7) 'gray-wool': drops 1 (key (35, 0), rate 100.00%)), 'mycelium': Block((110, 0) 'mycelium': drops 1 (key (3, 0), rate 100.00%)), 'furnace': Block((61, 0) 'furnace'), 'wooden-step': Block((44, 2) 'wooden-step': transparent, drops 1 (key (44, 0), rate 100.00%)), 'pink-wool': Block((35, 6) 'pink-wool': drops 1 (key (35, 0), rate 100.00%)), 'emerald-block': Block((133, 0) 'emerald-block'), 'ladder': Block((65, 0) 'ladder': transparent), 'stone-plate': Block((70, 0) 'stone-plate': transparent), 'cobblestone': Block((4, 0) 'cobblestone'), 'flower': Block((37, 0) 'flower': transparent), 'portal': Block((90, 0) 'portal': transparent), 'pumpkin-stem': Block((104, 0) 'pumpkin-stem': drops 3 (key (361, 0), rate 100.00%)), 'slow-sand': Block((88, 0) 'slow-sand'), 'lapis-lazuli-ore': Block((21, 0) 'lapis-lazuli-ore': drops 6 (key (351, 4), rate 100.00%)), 'lapis-lazuli-block': Block((22, 0) 'lapis-lazuli-block'), 'note-block': Block((25, 0) 'note-block'), 'redstone-repeater-on': Block((94, 0) 'redstone-repeater-on': transparent, drops 1 (key (356, 0), rate 100.00%)), 67: Block((67, 0) 'stone-stairs': transparent), 'mob-spawner': Block((52, 0) 'mob-spawner': transparent, drops 1 (key (0, 0), rate 100.00%)), 'redstone-torch-off': Block((75, 0) 'redstone-torch-off': transparent), 'sandstone-step': Block((44, 1) 'sandstone-step': transparent, drops 1 (key (44, 0), rate 100.00%)), 'obsidian': Block((49, 0) 'obsidian'), 'burning-furnace': Block((62, 0) 'burning-furnace': drops 1 (key (61, 0), rate 100.00%)), 85: Block((85, 0) 'fence': transparent)}

	A dictionary of Block objects.

This dictionary can be indexed by slot number or block name.

	
bravo.blocks.items = {'': Item((387, 0) ''), 'wooden-door': Item((324, 0) 'wooden-door'), 379: Item((379, 0) ''), 'emerald': Item((388, 0) 'emerald'), 'compass': Item((345, 0) 'compass'), 'blaze-rod': Item((369, 0) 'blaze-rod'), 'chainmail-leggings': Item((304, 0) 'chainmail-leggings'), 'paper': Item((339, 0) 'paper'), 'glass-bottle': Item((374, 0) 'glass-bottle'), 'shears': Item((359, 0) 'shears'), 'cooked-porkchop': Item((320, 0) 'cooked-porkchop'), 'fermented-spider-eye': Item((376, 0) 'fermented-spider-eye'), 261: Item((261, 0) 'bow'), 'sugar-cane': Item((338, 0) 'sugar-cane'), 'slimeball': Item((341, 0) 'slimeball'), 'purple-dye': Item((351, 5) 'purple-dye'), 'chainmail-helmet': Item((302, 0) 'chainmail-helmet'), 348: Item((348, 0) 'glowstone-dust'), 'magma-cream': Item((378, 0) 'magma-cream'), 'diamond-chestplate': Item((311, 0) 'diamond-chestplate'), 349: Item((349, 0) 'raw-fish'), 'chirp-music-disc': Item((2259, 0) 'chirp-music-disc'), 'cocoa-beans': Item((351, 3) 'cocoa-beans'), 'wooden-sword': Item((268, 0) 'wooden-sword'), 'string': Item((287, 0) 'string'), 'pink-dye': Item((351, 9) 'pink-dye'), 346: Item((346, 0) 'fishing-rod'), 'pumpkin-seeds': Item((361, 0) 'pumpkin-seeds'), 'melon-slice': Item((360, 0) 'melon-slice'), 'snowball': Item((332, 0) 'snowball'), 'flint': Item((318, 0) 'flint'), 'iron-helmet': Item((306, 0) 'iron-helmet'), 'dye': Item((351, 0) 'dye'), 'magenta-dye': Item((351, 13) 'magenta-dye'), 'diamond-pickaxe': Item((278, 0) 'diamond-pickaxe'), 'bread': Item((297, 0) 'bread'), 'iron-boots': Item((309, 0) 'iron-boots'), 'leather-chestplate': Item((299, 0) 'leather-chestplate'), 'iron-door': Item((330, 0) 'iron-door'), 'diamond-shovel': Item((277, 0) 'diamond-shovel'), 'raw-porkchop': Item((319, 0) 'raw-porkchop'), 'leather': Item((334, 0) 'leather'), 'gold-chestplate': Item((315, 0) 'gold-chestplate'), 'gold-sword': Item((283, 0) 'gold-sword'), 'charcoal': Item((263, 1) 'charcoal'), 'green-music-disc': Item((2257, 0) 'green-music-disc'), 'rotten-flesh': Item((367, 0) 'rotten-flesh'), 'blocks-music-disc': Item((2258, 0) 'blocks-music-disc'), 'ghast-tear': Item((370, 0) 'ghast-tear'), 'arrow': Item((262, 0) 'arrow'), 361: Item((361, 0) 'pumpkin-seeds'), 'iron-chestplate': Item((307, 0) 'iron-chestplate'), 'water-bucket': Item((326, 0) 'water-bucket'), 'iron-pickaxe': Item((257, 0) 'iron-pickaxe'), 'cooked-fish': Item((350, 0) 'cooked-fish'), 'bone': Item((352, 0) 'bone'), 'diamond-leggings': Item((312, 0) 'diamond-leggings'), 363: Item((363, 0) 'raw-beef'), 'blaze-powder': Item((377, 0) 'blaze-powder'), 'mine-cart': Item((328, 0) 'mine-cart'), 'leather-leggings': Item((300, 0) 'leather-leggings'), 'bone-meal': Item((351, 15) 'bone-meal'), 'raw-beef': Item((363, 0) 'raw-beef'), 'ink-sac': Item((351, 0) 'ink-sac'), 'sign': Item((323, 0) 'sign'), 'diamond-axe': Item((279, 0) 'diamond-axe'), 366: Item((366, 0) 'cooked-chicken'), 'storage-minecart': Item((342, 0) 'storage-minecart'), 'redstone': Item((331, 0) 'redstone'), 'stone-sword': Item((272, 0) 'stone-sword'), 'wooden-axe': Item((271, 0) 'wooden-axe'), 'stone-axe': Item((275, 0) 'stone-axe'), 'paintings': Item((321, 0) 'paintings'), 'clock': Item((347, 0) 'clock'), 'milk': Item((335, 0) 'milk'), 'gold-boots': Item((317, 0) 'gold-boots'), 'clay-brick': Item((336, 0) 'clay-brick'), 'boat': Item((333, 0) 'boat'), 'gold-nugget': Item((371, 0) 'gold-nugget'), 'far-music-disc': Item((2260, 0) 'far-music-disc'), 364: Item((364, 0) 'steak'), 'diamond-sword': Item((276, 0) 'diamond-sword'), 373: Item((373, 0) 'potions'), 'redstone-repeater': Item((356, 0) 'redstone-repeater'), 'stone-hoe': Item((291, 0) 'stone-hoe'), 'nether-wart': Item((372, 0) 'nether-wart'), 'wheat': Item((296, 0) 'wheat'), 'light-blue-dye': Item((351, 12) 'light-blue-dye'), 'powered-minecart': Item((343, 0) 'powered-minecart'), 384: Item((384, 0) ''), 2257: Item((2257, 0) 'green-music-disc'), 2256: Item((2256, 0) 'gold-music-disc'), 376: Item((376, 0) 'fermented-spider-eye'), 2258: Item((2258, 0) 'blocks-music-disc'), 2259: Item((2259, 0) 'chirp-music-disc'), 'cookie': Item((357, 0) 'cookie'), 'ender-pearl': Item((368, 0) 'ender-pearl'), 'green-dye': Item((351, 2) 'green-dye'), 314: Item((314, 0) 'gold-helmet'), 'diamond-boots': Item((313, 0) 'diamond-boots'), 'steak': Item((364, 0) 'steak'), 'leather-boots': Item((301, 0) 'leather-boots'), 'gold-helmet': Item((314, 0) 'gold-helmet'), 'lapis-lazuli': Item((351, 4) 'lapis-lazuli'), 'bow': Item((261, 0) 'bow'), 'gray-dye': Item((351, 8) 'gray-dye'), 'clay-balls': Item((337, 0) 'clay-balls'), 'seeds': Item((295, 0) 'seeds'), 'yellow-dye': Item((351, 11) 'yellow-dye'), 2260: Item((2260, 0) 'far-music-disc'), 'potions': Item((373, 0) 'potions'), 'fishing-rod': Item((346, 0) 'fishing-rod'), 256: Item((256, 0) 'iron-shovel'), 257: Item((257, 0) 'iron-pickaxe'), 258: Item((258, 0) 'iron-axe'), 259: Item((259, 0) 'flint-and-steel'), 260: Item((260, 0) 'apple'), 'apple': Item((260, 0) 'apple'), 262: Item((262, 0) 'arrow'), 263: Item((263, 0) 'coal'), 264: Item((264, 0) 'diamond'), 265: Item((265, 0) 'iron-ingot'), 266: Item((266, 0) 'gold-ingot'), 267: Item((267, 0) 'iron-sword'), 268: Item((268, 0) 'wooden-sword'), 269: Item((269, 0) 'wooden-shovel'), 270: Item((270, 0) 'wooden-pickaxe'), 271: Item((271, 0) 'wooden-axe'), 272: Item((272, 0) 'stone-sword'), 273: Item((273, 0) 'stone-shovel'), 274: Item((274, 0) 'stone-pickaxe'), 275: Item((275, 0) 'stone-axe'), 276: Item((276, 0) 'diamond-sword'), 277: Item((277, 0) 'diamond-shovel'), 278: Item((278, 0) 'diamond-pickaxe'), 279: Item((279, 0) 'diamond-axe'), 280: Item((280, 0) 'stick'), 281: Item((281, 0) 'bowl'), 282: Item((282, 0) 'mushroom-soup'), 283: Item((283, 0) 'gold-sword'), 284: Item((284, 0) 'gold-shovel'), 285: Item((285, 0) 'gold-pickaxe'), 286: Item((286, 0) 'gold-axe'), 287: Item((287, 0) 'string'), 288: Item((288, 0) 'feather'), 289: Item((289, 0) 'sulphur'), 290: Item((290, 0) 'wooden-hoe'), 291: Item((291, 0) 'stone-hoe'), 292: Item((292, 0) 'iron-hoe'), 293: Item((293, 0) 'diamond-hoe'), 294: Item((294, 0) 'gold-hoe'), 295: Item((295, 0) 'seeds'), 296: Item((296, 0) 'wheat'), 297: Item((297, 0) 'bread'), 298: Item((298, 0) 'leather-helmet'), 299: Item((299, 0) 'leather-chestplate'), 300: Item((300, 0) 'leather-leggings'), 301: Item((301, 0) 'leather-boots'), 302: Item((302, 0) 'chainmail-helmet'), 303: Item((303, 0) 'chainmail-chestplate'), 304: Item((304, 0) 'chainmail-leggings'), 305: Item((305, 0) 'chainmail-boots'), 306: Item((306, 0) 'iron-helmet'), 307: Item((307, 0) 'iron-chestplate'), 308: Item((308, 0) 'iron-leggings'), 309: Item((309, 0) 'iron-boots'), 310: Item((310, 0) 'diamond-helmet'), 311: Item((311, 0) 'diamond-chestplate'), 312: Item((312, 0) 'diamond-leggings'), 313: Item((313, 0) 'diamond-boots'), 'feather': Item((288, 0) 'feather'), 315: Item((315, 0) 'gold-chestplate'), 'diamond-helmet': Item((310, 0) 'diamond-helmet'), 317: Item((317, 0) 'gold-boots'), 'gold-ingot': Item((266, 0) 'gold-ingot'), 319: Item((319, 0) 'raw-porkchop'), 320: Item((320, 0) 'cooked-porkchop'), 321: Item((321, 0) 'paintings'), 322: Item((322, 0) 'golden-apple'), 'diamond': Item((264, 0) 'diamond'), 324: Item((324, 0) 'wooden-door'), 325: Item((325, 0) 'bucket'), 326: Item((326, 0) 'water-bucket'), 327: Item((327, 0) 'lava-bucket'), 328: Item((328, 0) 'mine-cart'), 329: Item((329, 0) 'saddle'), 330: Item((330, 0) 'iron-door'), 331: Item((331, 0) 'redstone'), 332: Item((332, 0) 'snowball'), 'iron-leggings': Item((308, 0) 'iron-leggings'), 334: Item((334, 0) 'leather'), 335: Item((335, 0) 'milk'), 336: Item((336, 0) 'clay-brick'), 337: Item((337, 0) 'clay-balls'), 338: Item((338, 0) 'sugar-cane'), 318: Item((318, 0) 'flint'), 340: Item((340, 0) 'book'), 'stick': Item((280, 0) 'stick'), 342: Item((342, 0) 'storage-minecart'), 343: Item((343, 0) 'powered-minecart'), 344: Item((344, 0) 'egg'), 345: Item((345, 0) 'compass'), 'sulphur': Item((289, 0) 'sulphur'), 347: Item((347, 0) 'clock'), 'lava-bucket': Item((327, 0) 'lava-bucket'), 'gold-shovel': Item((284, 0) 'gold-shovel'), 350: Item((350, 0) 'cooked-fish'), 351: Item((351, 0) 'dye'), 352: Item((352, 0) 'bone'), 353: Item((353, 0) 'sugar'), 354: Item((354, 0) 'cake'), 355: Item((355, 0) 'bed'), 356: Item((356, 0) 'redstone-repeater'), 357: Item((357, 0) 'cookie'), 358: Item((358, 0) 'map'), 359: Item((359, 0) 'shears'), 360: Item((360, 0) 'melon-slice'), 316: Item((316, 0) 'gold-leggings'), 362: Item((362, 0) 'melon-seeds'), 'saddle': Item((329, 0) 'saddle'), 'bucket': Item((325, 0) 'bucket'), 365: Item((365, 0) 'raw-chicken'), 'bed': Item((355, 0) 'bed'), 333: Item((333, 0) 'boat'), 368: Item((368, 0) 'ender-pearl'), 369: Item((369, 0) 'blaze-rod'), 370: Item((370, 0) 'ghast-tear'), 371: Item((371, 0) 'gold-nugget'), 372: Item((372, 0) 'nether-wart'), 'iron-axe': Item((258, 0) 'iron-axe'), 374: Item((374, 0) 'glass-bottle'), 375: Item((375, 0) 'spider-eye'), 'cake': Item((354, 0) 'cake'), 377: Item((377, 0) 'blaze-powder'), 378: Item((378, 0) 'magma-cream'), 'raw-chicken': Item((365, 0) 'raw-chicken'), 380: Item((380, 0) ''), 381: Item((381, 0) ''), 382: Item((382, 0) ''), 383: Item((383, 0) ''), 'stone-pickaxe': Item((274, 0) 'stone-pickaxe'), 'iron-hoe': Item((292, 0) 'iron-hoe'), 386: Item((386, 0) ''), 387: Item((387, 0) ''), 388: Item((388, 0) 'emerald'), 'wooden-hoe': Item((290, 0) 'wooden-hoe'), 'gold-pickaxe': Item((285, 0) 'gold-pickaxe'), 'iron-ingot': Item((265, 0) 'iron-ingot'), 'gold-hoe': Item((294, 0) 'gold-hoe'), 323: Item((323, 0) 'sign'), 'chainmail-chestplate': Item((303, 0) 'chainmail-chestplate'), 'cyan-dye': Item((351, 6) 'cyan-dye'), 'mushroom-soup': Item((282, 0) 'mushroom-soup'), 'stone-shovel': Item((273, 0) 'stone-shovel'), 'light-gray-dye': Item((351, 7) 'light-gray-dye'), 'glowstone-dust': Item((348, 0) 'glowstone-dust'), 'sugar': Item((353, 0) 'sugar'), 'bowl': Item((281, 0) 'bowl'), 'iron-shovel': Item((256, 0) 'iron-shovel'), 'normal-coal': Item((263, 0) 'normal-coal'), 'gold-leggings': Item((316, 0) 'gold-leggings'), 'book': Item((340, 0) 'book'), 385: Item((385, 0) ''), 'spider-eye': Item((375, 0) 'spider-eye'), 'iron-sword': Item((267, 0) 'iron-sword'), 'gold-music-disc': Item((2256, 0) 'gold-music-disc'), 'map': Item((358, 0) 'map'), 'lime-dye': Item((351, 10) 'lime-dye'), 'diamond-hoe': Item((293, 0) 'diamond-hoe'), 'golden-apple': Item((322, 0) 'golden-apple'), 'chainmail-boots': Item((305, 0) 'chainmail-boots'), 'leather-helmet': Item((298, 0) 'leather-helmet'), 'wooden-shovel': Item((269, 0) 'wooden-shovel'), 'gold-axe': Item((286, 0) 'gold-axe'), 'wooden-pickaxe': Item((270, 0) 'wooden-pickaxe'), 'raw-fish': Item((349, 0) 'raw-fish'), 'cooked-chicken': Item((366, 0) 'cooked-chicken'), 'flint-and-steel': Item((259, 0) 'flint-and-steel'), 367: Item((367, 0) 'rotten-flesh'), 'melon-seeds': Item((362, 0) 'melon-seeds'), 'coal': Item((263, 0) 'coal'), 339: Item((339, 0) 'paper'), 'orange-dye': Item((351, 14) 'orange-dye'), 'red-dye': Item((351, 1) 'red-dye'), 'egg': Item((344, 0) 'egg'), 341: Item((341, 0) 'slimeball')}

	A dictionary of Item objects.

This dictionary can be indexed by slot number or block name.

	
bravo.blocks.parse_block(block)

	Get the key for a given block/item.

	
bravo.blocks.unstackable = (268, 269, 270)

	List of fuel blocks and items maped to burn time

chunk – Chunk data structures

The chunk module holds the data structures required to track and update
block data in chunks.

entity – Entities

The entity module contains entity classes.

furnace – Furnace Tile

The Furnace tile has method changed(factory, coords) where
coords is tuple (bigx, smallx, bigz, smallz, y) - coordinates of the
furnace which inventory was updated.

inform content of furnace was probably changed
d = factory.world.request_chunk(bigx, bigz)
@d.addCallback
def on_change(chunk):
 furnace = self.get_furnace_tile(chunk, (x, y, z))
 if furnace is not None:
 furnace.changed(factory, coords)

Furnace.changed() method checks if current furnace shall start to burn:
it must have source item, fuel and must have valid recipe. If it meets the
requirements Furnace schedules burn() method with LoopingCall
for every .5 second.

At every burn() call it:

	increases cooktime timer and checks if item shall be crafted on this iteration;

	decreases fuel counter and burns next fuel item if needed;

	if there is no need to burn next fuel item because crafted slot is full or source
slot is empty it stops the LoopingCall;

	sends progress bars updates to all players that have this furnace’s window opened.

ibravo – Interfaces

The ibravo module holds the interfaces required to implement plugins and
hooks.

Interface Bases

These are the base interface classes for Bravo. Plugin developers probably
will not inherit from these; they are used purely to express common plugin
functionality.

	
class bravo.ibravo.IBravoPlugin

	Bases: zope.interface.Interface

Interface for plugins.

This interface stores common metadata used during plugin discovery.

	
class bravo.ibravo.ISortedPlugin

	Bases: bravo.ibravo.IBravoPlugin

Parent interface for sorted plugins.

Sorted plugins have an innate and automatic ordering inside lists thanks
to the ability to advertise their dependencies.

Plugins

	
class bravo.ibravo.IAutomaton

	Bases: bravo.ibravo.IBravoPlugin

An automaton.

Automatons are given blocks from chunks which interest them, and may do
processing on those blocks.

	
class bravo.ibravo.IChatCommand

	Bases: bravo.ibravo.ICommand

Interface for chat commands.

Chat commands are invoked from the chat inside clients, so they are always
called by a specific client.

This interface is specifically designed to exist comfortably side-by-side
with IConsoleCommand.

	
class bravo.ibravo.IConsoleCommand

	Bases: bravo.ibravo.ICommand

Interface for console commands.

Console commands are invoked from a console or some other location with
two defining attributes: Access restricted to superusers, and no user
issuing the command. As such, no access control list applies to them, but
they must be given usernames to operate on explicitly.

	
class bravo.ibravo.IRecipe

	Bases: bravo.ibravo.IBravoPlugin

A description for creating materials from other materials.

	
class bravo.ibravo.ISeason

	Bases: bravo.ibravo.IBravoPlugin

Seasons are transformational stages run during certain days to emulate an
environment.

	
class bravo.ibravo.ISerializer

	Bases: bravo.ibravo.IBravoPlugin

Class that understands how to serialize several different kinds of objects
to and from disk-friendly formats.

Implementors of this interface are expected to provide a uniform
implementation of their serialization technique.

	
class bravo.ibravo.ITerrainGenerator

	Bases: bravo.ibravo.ISortedPlugin

Interface for terrain generators.

	
class bravo.ibravo.IWorldResource

	Bases: bravo.ibravo.IBravoPlugin, twisted.web.resource.IResource

Interface for a world specific web resource.

Hooks

	
class bravo.ibravo.IPreBuildHook

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken before a block is placed.

	
class bravo.ibravo.IPostBuildHook

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken after a block is placed.

	
class bravo.ibravo.IDigHook

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken after a block is dug up.

	
class bravo.ibravo.ISignHook

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken after a sign is updated.

This hook fires both on sign creation and sign editing.

	
class bravo.ibravo.IUseHook

	Bases: bravo.ibravo.ISortedPlugin

Hook for actions to be taken when a player interacts with an entity.

Each plugin needs to specify a list of entity types it is interested in
in advance, and it will only be called for those.

infini – InfiniCraft

Protocols and factories for InfiniCraft.

Packets

Protocols

Factories

inventory – Inventories

The inventory module contains all kinds of windows and window parts
like inventory, crafting and storage slots.

Generally to create a window you must create a Window object (of specific class
derived from Window) and pass arguments like: window ID, player’s inventory,
slot’s or tile’s inventory, coordinates etc.

Generic construction (never use in your code :)

window = Window(id, Inventory(), Workbench(), ...)

Please note that player’s inventory window is a special case. It is created when
user logins and stays always opened. You probably will never have to create it.

def authenticated(self):
 BetaServerProtocol.authenticated(self)

 # Init player, and copy data into it.
 self.player = yield self.factory.world.load_player(self.username)
 ...
 # Init players' inventory window.
 self.inventory = InventoryWindow(self.player.inventory)
 ...

Every windows have own class. For instanse, to create a workbench window:

i = WorkbenchWindow(self.wid, self.player.inventory)

Furnace:

bigx, smallx, bigz, smallz, y = coords
furnace = self.chunks[x, y].tiles[(smallx, y, smallz)]
window = FurnaceWindow(self.wid, self.player.inventory, furnace.inventory, coords)

	
class bravo.inventory.Inventory

	Bases: bravo.inventory.SerializableSlots

The class represents Player’s inventory

	
add(item, quantity)

	Attempt to add an item to the inventory.

	Parameters:	item (tuple [https://docs.python.org/2/library/functions.html#tuple]) – a key representing the item

	Returns:	quantity of items that did not fit inventory

	
consume(item, index)

	Attempt to remove a used holdable from the inventory.

A return value of False indicates that there were no holdables of
the given type and slot to consume.

	Parameters:	
	item (tuple [https://docs.python.org/2/library/functions.html#tuple]) – a key representing the type of the item

	slot (int [https://docs.python.org/2/library/functions.html#int]) – which slot was selected

	Returns:	whether the item was successfully removed

	
select_armor(index, alternate, shift, selected=None)

	Handle a slot selection on an armor slot.

	Returns tuple:	(True/False, new selection)

	
class bravo.inventory.SerializableSlots

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Base class for all slots configurations

location – Locations

The location module contains objects for tracking and analyzing locations.

plugin – Plugin loader

The plugin module implements a sophisticated, featureful plugin loader
with interface-based discovery.

	
bravo.plugin.add_plugin_edges(d)

	Mirror edges to all plugins in a dictionary.

	
bravo.plugin.expand_names(plugins, names)

	Given a list of names, expand wildcards and discard disabled names.

Used to implement * and - options in plugin lists.

	Parameters:	
	plugins (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – plugins to use for expansion

	names (list) – names to examine

	Returns:	a list of filtered plugin names

	
bravo.plugin.get_plugins(interface, package)

	Lazily find objects in a package which implement a given interface.

This is a rewrite of Twisted’s twisted.plugin.getPlugins which
searches for implementations of interfaces rather than providers.

	Parameters:	
	interface (interface) – the interface to match against

	package (str [https://docs.python.org/2/library/functions.html#str]) – the name of the package to search

	
bravo.plugin.retrieve_named_plugins(interface, names, **kwargs)

	Look up a list of plugins by name.

Plugins are returned in the same order as their names.

	Parameters:	
	interface (interface) – the interface to use

	names (list) – plugins to find

	parameters (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – parameters to pass into the plugins

	Returns:	a list of plugins

	Raises:	PluginException – no plugins could be found for the given interface

	
bravo.plugin.retrieve_plugins(interface, **kwargs)

	Look up all plugins for a certain interface.

If the plugin cache is enabled, this function will not attempt to reload
plugins from disk or discover new plugins.

	Parameters:	
	interface (interface) – the interface to use

	parameters (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – parameters to pass into the plugins

	Returns:	a dict of plugins, keyed by name

	Raises:	PluginException – no plugins could be found for the given interface

	
bravo.plugin.retrieve_sorted_plugins(interface, names, **kwargs)

	Look up a list of plugins, sorted by interdependencies.

	Parameters:	parameters (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – parameters to pass into the plugins

	
bravo.plugin.sort_plugins(plugins)

	Make a sorted list of plugins by dependency.

If the list cannot be arranged into a DAG, an error will be raised. This
usually means that a cyclic dependency was found.

	Raises:	PluginException – cyclic dependency detected

	
bravo.plugin.verify_plugin(interface, plugin)

	Plugin interface verification.

This function will call verifyObject() and validateInvariants() on
the plugins passed to it.

The primary purpose of this wrapper is to do logging, but it also permits
code to be slightly cleaner, easier to test, and callable from other
modules.

stdio – Console support

The stdio module provides a non-blocking, interactive console for
administration, diagnostics, and debugging of running servers.

world – Worlds

Auxiliary

Modules which do not contribute directly to the functionality of Bravo.

	simplex – Simplex noise generation

	utilities – Helper functions
	Automaton Helpers

	Chat Formatting

	Coordinate Handling

	Data Packing

	Decorators

	Geometry

	Scheduling

	Spatial Hashes

	Trigonometry

simplex – Simplex noise generation

	
bravo.simplex.dot2(u, v)

	Dot product of two 2-dimensional vectors.

	
bravo.simplex.dot3(u, v)

	Dot product of two 3-dimensional vectors.

	
bravo.simplex.octaves2(x, y, count)

	Generate fractal octaves of noise.

Summing increasingly scaled amounts of noise with itself creates fractal
clouds of noise.

	Parameters:	
	x (int [https://docs.python.org/2/library/functions.html#int]) – X coordinate

	y (int [https://docs.python.org/2/library/functions.html#int]) – Y coordinate

	count (int [https://docs.python.org/2/library/functions.html#int]) – number of octaves

	Returns:	Scaled fractal noise

	
bravo.simplex.octaves3(x, y, z, count)

	Generate fractal octaves of noise.

	Parameters:	
	x (int [https://docs.python.org/2/library/functions.html#int]) – X coordinate

	y (int [https://docs.python.org/2/library/functions.html#int]) – Y coordinate

	z (int [https://docs.python.org/2/library/functions.html#int]) – Z coordinate

	count (int [https://docs.python.org/2/library/functions.html#int]) – number of octaves

	Returns:	Scaled fractal noise

	
bravo.simplex.offset2(x, y, xoffset, yoffset, octaves=1)

	Generate an offset noise difference field.

	Parameters:	
	x (int [https://docs.python.org/2/library/functions.html#int]) – X coordinate

	y (int [https://docs.python.org/2/library/functions.html#int]) – Y coordinate

	xoffset (int [https://docs.python.org/2/library/functions.html#int]) – X offset

	yoffset (int [https://docs.python.org/2/library/functions.html#int]) – Y offset

	Returns:	Difference of noises

	
bravo.simplex.reseed(seed)

	Reseed the simplex gradient field.

	
bravo.simplex.set_seed(seed)

	Set the current seed.

	
bravo.simplex.simplex2(x, y)

	Generate simplex noise at the given coordinates.

This particular implementation has very high chaotic features at normal
resolution; zooming in by a factor of 16x to 256x is going to yield more
pleasing results for most applications.

The gradient field must be seeded prior to calling this function; call
reseed() first.

	Parameters:	
	x (int [https://docs.python.org/2/library/functions.html#int]) – X coordinate

	y (int [https://docs.python.org/2/library/functions.html#int]) – Y coordinate

	Returns:	simplex noise

	Raises:	Exception – the gradient field is not seeded

	
bravo.simplex.simplex3(x, y, z)

	Generate simplex noise at the given coordinates.

This is a 3-dimensional flavor of simplex2(); all of the same caveats
apply.

The gradient field must be seeded prior to calling this function; call
reseed() first.

	Parameters:	
	x (int [https://docs.python.org/2/library/functions.html#int]) – X coordinate

	y (int [https://docs.python.org/2/library/functions.html#int]) – Y coordinate

	z (int [https://docs.python.org/2/library/functions.html#int]) – Z coordinate

	Returns:	simplex noise

	Raises:	Exception – the gradient field is not seeded or you broke the
function somehow

utilities – Helper functions

The utilities package is the standard home for shared functions which many
modules may use. The spirit of utilities is also to isolate sections of
critical code so that unit tests can be used to ensure a minimum of bugginess.

Automaton Helpers

	
bravo.utilities.automatic.column_scan(automaton, chunk)

	Utility function which provides a chunk scanner which only examines the
tallest blocks in the chunk. This can be useful for automatons which only
care about sunlit or elevated areas.

This method can be used directly in automaton classes to provide scan().

	
bravo.utilities.automatic.naive_scan(automaton, chunk)

	Utility function which can be used to implement a naive, slow, but
thorough chunk scan for automatons.

This method is designed to be directly useable on automaton classes to
provide the scan() interface.

This function depends on implementation details of Chunk.

Chat Formatting

Colorizers.

	
bravo.utilities.chat.complete(sentence, possibilities)

	Perform completion on a string using a list of possible strings.

Returns a single string containing all possibilities.

	
bravo.utilities.chat.sanitize_chat(s)

	Verify that the given chat string is safe to send to Notchian recepients.

	
bravo.utilities.chat.username_alternatives(n)

	Permute a username through several common alternative-finding algorithms.

Coordinate Handling

Utilities for coordinate handling and munging.

	
bravo.utilities.coords.adjust_coords_for_face(coords, face)

	Adjust a set of coords according to a face.

The face is a standard string descriptor, such as “+x”.

The “noop” face is supported.

	
bravo.utilities.coords.polar_round_vector(vector)

	Rounds a vector towards zero

	
bravo.utilities.coords.split_coords(x, z)

	Split a pair of coordinates into chunk and subchunk coordinates.

	Parameters:	
	x (int [https://docs.python.org/2/library/functions.html#int]) – the X coordinate

	z (int [https://docs.python.org/2/library/functions.html#int]) – the Z coordinate

	Returns:	a tuple of the X chunk, X subchunk, Z chunk, and Z subchunk

	
bravo.utilities.coords.taxicab2(x1, y1, x2, y2)

	Return the taxicab distance between two blocks.

	
bravo.utilities.coords.taxicab3(x1, y1, z1, x2, y2, z2)

	Return the taxicab distance between two blocks, in three dimensions.

Data Packing

More affectionately known as “bit-twiddling.”

	
bravo.utilities.bits.grouper(n, iterable, fillvalue=None)

	grouper(3, ‘ABCDEFG’, ‘x’) –> ABC DEF Gxx

	
bravo.utilities.bits.pack_nibbles(a)

	Pack pairs of nibbles into bytes.

Bytes are returned as characters.

	Parameters:	a (array [https://docs.python.org/2/library/array.html#module-array]) – nibbles to pack

	Returns:	packed nibbles as a string of bytes

	
bravo.utilities.bits.unpack_nibbles(l)

	Unpack bytes into pairs of nibbles.

Nibbles are half-byte quantities. The nibbles unpacked by this function
are returned as unsigned numeric values.

>>> unpack_nibbles("a")
[6, 1]
>>> unpack_nibbles("nibbles")
[6, 14, 6, 9, 6, 2, 6, 2, 6, 12, 6, 5, 7, 3]

	Parameters:	l (list) – bytes

	Returns:	list of nibbles

Decorators

General decorators for a variety of purposes.

	
bravo.utilities.decos.timed(f)

	Print out timing statistics on a given callable.

Intended largely for debugging; keep this in the tree for profiling even
if it’s not currently wired up.

Geometry

Simple pixel graphics helpers.

	
bravo.utilities.geometry.gen_close_point(point1, point2)

	Retrieve the first integer set of coordinates on the line from the first
point to the second point.

The set of coordinates corresponding to the first point will not be
retrieved.

	
bravo.utilities.geometry.gen_line_covered(point1, point2)

	This is Bresenham’s algorithm with a little twist: all the blocks that
intersect with the line are yielded.

	
bravo.utilities.geometry.gen_line_simple(point1, point2)

	An adaptation of Bresenham’s line algorithm in three dimensions.

This function returns an iterable of integer coordinates along the line
from the first point to the second point. No points are omitted.

Scheduling

	
class bravo.utilities.temporal.PendingEvent

	Bases: object [https://docs.python.org/2/library/functions.html#object]

An event which will happen at some point.

Structurally, this could be thought of as a poor man’s upside-down
DeferredList; it turns a single callback/errback into a broadcast which
fires many multiple Deferreds.

This code came from Epsilon and should go into Twisted at some point.

	
bravo.utilities.temporal.split_time(timestamp)

	Turn an MC timestamp into hours and minutes.

The time is calculated by interpolating the MC clock over the standard
24-hour clock.

	Parameters:	timestamp (int [https://docs.python.org/2/library/functions.html#int]) – MC timestamp, in the range 0-24000

	Returns:	a tuple of hours and minutes on the 24-hour clock

	
bravo.utilities.temporal.timestamp_from_clock(clock)

	Craft an int-sized timestamp from a clock.

More precisely, the size of the timestamp is 4 bytes, and the clock must
be an implementor of IReactorTime. twisted.internet.reactor and
twisted.internet.task.Clock are the primary suspects.

This function’s timestamps are millisecond-accurate.

Spatial Hashes

	
class bravo.utilities.spatial.Block2DSpatialDict

	Bases: bravo.utilities.spatial.SpatialDict

Class for tracking blocks in the XZ-plane.

	
key_for_bucket(key)

	Partition keys into chunk-sized buckets.

	
keys_near(key, radius)

	Get all bucket keys “near” this key.

This method may return a generator.

	
class bravo.utilities.spatial.Block3DSpatialDict

	Bases: bravo.utilities.spatial.SpatialDict

Class for tracking blocks in the XZ-plane.

	
key_for_bucket(key)

	Partition keys into chunk-sized buckets.

	
keys_near(key, radius)

	Get all bucket keys “near” this key.

This method may return a generator.

	
class bravo.utilities.spatial.SpatialDict

	Bases: object [https://docs.python.org/2/library/functions.html#object], UserDict.DictMixin [https://docs.python.org/2/library/userdict.html#UserDict.DictMixin]

A spatial dictionary, for accelerating spatial lookups.

This particular class is a template for specific spatial dictionaries; in
order to make it work, subclass it and add key_for_bucket().

	
iteritemsnear(key, radius)

	A version of iteritems() that filters based on the distance from a
given key.

The key does not need to actually be in the dictionary.

	
iterkeys()

	Yield all the keys.

	
iterkeysnear(key, radius)

	Yield all of the keys within a certain radius of this key.

	
itervaluesnear(key, radius)

	Yield all of the values within a certain radius of this key.

	
keys()

	Get a list of all keys in the dictionary.

Trigonometry

	
bravo.utilities.maths.circling(x, y, r)

	Generate the points of the filled integral circle of the given radius
around the given coordinates.

	
bravo.utilities.maths.clamp(x, low, high)

	Clamp or saturate a number to be no lower than a minimum and no higher
than a maximum.

Implemented as its own function simply because it’s so easy to mess up
when open-coded.

	
bravo.utilities.maths.morton2(x, y)

	Create a Morton number by interleaving the bits of two numbers.

This can be used to map 2D coordinates into the integers.

Inputs will be masked off to 16 bits, unsigned.

	
bravo.utilities.maths.rotated_cosine(x, y, theta, lambd)

	Evaluate a rotated 3D sinusoidal wave at a given point, angle, and
wavelength.

The function used is:

[image: f(x, y) = -\cos((x \cos\theta - y \sin\theta) / \lambda) / 2 + 1]

This function has a handful of useful properties; it has a local minimum
at f(0, 0) and oscillates infinitely betwen 0 and 1.

	Parameters:	
	x (float [https://docs.python.org/2/library/functions.html#float]) – X coordinate

	y (float [https://docs.python.org/2/library/functions.html#float]) – Y coordinate

	theta (float [https://docs.python.org/2/library/functions.html#float]) – angle of rotation

	lambda (float [https://docs.python.org/2/library/functions.html#float]) – wavelength

	Returns:	float of f(x, y)

	
bravo.utilities.maths.sorted_by_distance(iterable, x, y)

	Like sorted(), but by distance to the given coordinates.

Tools

A handful of utilities are distributed with Bravo, in the tools directory.

Chunkbench

Chunkbench is a script that tests terrain generation speed.

Jsondump

Jsondump pretty-prints a JSON file.

NBTdump

NBTdump pretty-prints an NBT file.

Noiseview

Noiseview creates a picture of simplex noise, using Bravo’s builtin noise
generator.

parser-cli

parser-cli parses and pretty-prints raw Alpha packets.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bravo	

 	
 	
 bravo.blocks	

 	
 	
 bravo.inventory	

 	
 	
 bravo.plugin	

 	
 	
 bravo.simplex	

 	
 	
 bravo.utilities.automatic	

 	
 	
 bravo.utilities.bits	

 	
 	
 bravo.utilities.chat	

 	
 	
 bravo.utilities.coords	

 	
 	
 bravo.utilities.decos	

 	
 	
 bravo.utilities.geometry	

 	
 	
 bravo.utilities.maths	

 	
 	
 bravo.utilities.spatial	

 	
 	
 bravo.utilities.temporal	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add() (bravo.inventory.Inventory method)

 	add_plugin_edges() (in module bravo.plugin)

 	adjust_coords_for_face() (in module bravo.utilities.coords)

 	
 	armor_boots (in module bravo.blocks)

 	armor_chestplates (in module bravo.blocks)

 	armor_helmets (in module bravo.blocks)

 	armor_leggings (in module bravo.blocks)

B

 	
 	Block (class in bravo.blocks)

 	Block2DSpatialDict (class in bravo.utilities.spatial)

 	Block3DSpatialDict (class in bravo.utilities.spatial)

 	blocks (in module bravo.blocks)

 	bravo.blocks (module)

 	bravo.inventory (module)

 	bravo.plugin (module)

 	bravo.simplex (module)

 	
 	bravo.utilities.automatic (module)

 	bravo.utilities.bits (module)

 	bravo.utilities.chat (module)

 	bravo.utilities.coords (module)

 	bravo.utilities.decos (module)

 	bravo.utilities.geometry (module)

 	bravo.utilities.maths (module)

 	bravo.utilities.spatial (module)

 	bravo.utilities.temporal (module)

C

 	
 	circling() (in module bravo.utilities.maths)

 	clamp() (in module bravo.utilities.maths)

 	
 	column_scan() (in module bravo.utilities.automatic)

 	complete() (in module bravo.utilities.chat)

 	consume() (bravo.inventory.Inventory method)

D

 	
 	dot2() (in module bravo.simplex)

 	
 	dot3() (in module bravo.simplex)

E

 	
 	expand_names() (in module bravo.plugin)

F

 	
 	face() (bravo.blocks.Block method)

G

 	
 	gen_close_point() (in module bravo.utilities.geometry)

 	gen_line_covered() (in module bravo.utilities.geometry)

 	
 	gen_line_simple() (in module bravo.utilities.geometry)

 	get_plugins() (in module bravo.plugin)

 	grouper() (in module bravo.utilities.bits)

I

 	
 	IAutomaton (class in bravo.ibravo)

 	IBravoPlugin (class in bravo.ibravo)

 	IChatCommand (class in bravo.ibravo)

 	IConsoleCommand (class in bravo.ibravo)

 	IDigHook (class in bravo.ibravo)

 	Inventory (class in bravo.inventory)

 	IPostBuildHook (class in bravo.ibravo)

 	IPreBuildHook (class in bravo.ibravo)

 	IRecipe (class in bravo.ibravo)

 	ISeason (class in bravo.ibravo)

 	ISerializer (class in bravo.ibravo)

 	
 	ISignHook (class in bravo.ibravo)

 	ISortedPlugin (class in bravo.ibravo)

 	Item (class in bravo.blocks)

 	items (in module bravo.blocks)

 	iteritemsnear() (bravo.utilities.spatial.SpatialDict method)

 	iterkeys() (bravo.utilities.spatial.SpatialDict method)

 	iterkeysnear() (bravo.utilities.spatial.SpatialDict method)

 	ITerrainGenerator (class in bravo.ibravo)

 	itervaluesnear() (bravo.utilities.spatial.SpatialDict method)

 	IUseHook (class in bravo.ibravo)

 	IWorldResource (class in bravo.ibravo)

K

 	
 	key_for_bucket() (bravo.utilities.spatial.Block2DSpatialDict method)

 	(bravo.utilities.spatial.Block3DSpatialDict method)

 	
 	keys() (bravo.utilities.spatial.SpatialDict method)

 	keys_near() (bravo.utilities.spatial.Block2DSpatialDict method)

 	(bravo.utilities.spatial.Block3DSpatialDict method)

M

 	
 	morton2() (in module bravo.utilities.maths)

N

 	
 	naive_scan() (in module bravo.utilities.automatic)

O

 	
 	octaves2() (in module bravo.simplex)

 	octaves3() (in module bravo.simplex)

 	
 	offset2() (in module bravo.simplex)

 	orientable() (bravo.blocks.Block method)

 	orientation() (bravo.blocks.Block method)

P

 	
 	pack_nibbles() (in module bravo.utilities.bits)

 	parse_block() (in module bravo.blocks)

 	
 	PendingEvent (class in bravo.utilities.temporal)

 	polar_round_vector() (in module bravo.utilities.coords)

R

 	
 	reseed() (in module bravo.simplex)

 	retrieve_named_plugins() (in module bravo.plugin)

 	
 	retrieve_plugins() (in module bravo.plugin)

 	retrieve_sorted_plugins() (in module bravo.plugin)

 	rotated_cosine() (in module bravo.utilities.maths)

S

 	
 	sanitize_chat() (in module bravo.utilities.chat)

 	select_armor() (bravo.inventory.Inventory method)

 	SerializableSlots (class in bravo.inventory)

 	set_seed() (in module bravo.simplex)

 	simplex2() (in module bravo.simplex)

 	
 	simplex3() (in module bravo.simplex)

 	sort_plugins() (in module bravo.plugin)

 	sorted_by_distance() (in module bravo.utilities.maths)

 	SpatialDict (class in bravo.utilities.spatial)

 	split_coords() (in module bravo.utilities.coords)

 	split_time() (in module bravo.utilities.temporal)

T

 	
 	taxicab2() (in module bravo.utilities.coords)

 	taxicab3() (in module bravo.utilities.coords)

 	
 	timed() (in module bravo.utilities.decos)

 	timestamp_from_clock() (in module bravo.utilities.temporal)

U

 	
 	unpack_nibbles() (in module bravo.utilities.bits)

 	
 	unstackable (in module bravo.blocks)

 	username_alternatives() (in module bravo.utilities.chat)

V

 	
 	verify_plugin() (in module bravo.plugin)

 _static/comment-bright.png

_static/down.png

_static/file.png

_static/down-pressed.png

_static/up.png

_static/comment-close.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Bravo Documentation

 		A high-level introduction

 		Similar and different

 		Current state

 		Project licensing

 		Q & A

 		Credits

 		Features

 		Standard features

 		Console

 		Login

 		Geometry

 		Time

 		Entities

 		Inventory

 		Physics

 		Extended features

 		Console

 		Time

 		Plugins

 		Differences vs. vanilla Minecraft Server

 		Responsiveness

 		Chunks

 		Inventory

 		Minecarts

 		Philosophy

 		Design Decisions

 		Python

 		No Threads

 		Extreme Extensibility

 		Versioning

 		How to administer Bravo

 		Configuration

 		A note on lists

 		General settings

 		World settings

 		Plugin Data Files

 		Plugins

 		Packs

 		Beta

 		Terrain generators

 		Beaches

 		Boring

 		Grass

 		Caves

 		Cliffs

 		Complex

 		Erosion

 		Float

 		Safety

 		Simplex

 		Saplings

 		Ore

 		Watertable

 		Automatons

 		Seasons

 		Winter

 		Spring

 		Hooks

 		Build hooks

 		Dig hooks

 		Troubleshooting

 		Configuring

 		Errors

 		Help!

 		Web Service

 		Configuration

 		Extending Bravo

 		Asynchronous Ideas

 		The Good, the Bad, and the Ugly

 		Parameters

 		The Flexibility of Commands

 		Noise

 		Probability

 		Core

 		beta – Minecraft Beta

 		Packets

 		Protocols

 		Factories

 		blocks – Block descriptions

 		chunk – Chunk data structures

 		entity – Entities

 		furnace – Furnace Tile

 		ibravo – Interfaces

 		Interface Bases

 		Plugins

 		Hooks

 		infini – InfiniCraft

 		Packets

 		Protocols

 		Factories

 		inventory – Inventories

 		location – Locations

 		plugin – Plugin loader

 		stdio – Console support

 		world – Worlds

 		Auxiliary

 		simplex – Simplex noise generation

 		utilities – Helper functions

 		Automaton Helpers

 		Chat Formatting

 		Coordinate Handling

 		Data Packing

 		Decorators

 		Geometry

 		Scheduling

 		Spatial Hashes

 		Trigonometry

 		Tools

 		Chunkbench

 		Jsondump

 		NBTdump

 		Noiseview

 		parser-cli

_static/minus.png

_images/math/25a57f869a826ff274053d00d4c5f87f3486bf8a.png
cos((rcosf —ysinf)/N)/2+ 1

